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We extend the self-consistent Hartree–Fock–Popov calculations by Nikuni et al. [Phys. Rev. Lett. 84
(2000) 5868] concerning the Bose–Eistein condensation of magnons in TlCuCl3 to include a realistic
dispersion of the excitations. The result for the critical field as a function of temperature behaves as
HcðTÞ � Hcð0Þ � T3=2 below 2K but deviates from this simple power-law at higher temperature and is in
very good agreement with the experimental results. The specific heat is computed as a function of
temperature for different values of the magnetic field. It shows a �-like shape at the transition and is in
good qualitative agreement with the results of Oosawa et al. [Phys. Rev. B 63 (2001) 134416].
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1. Introduction

TlCuCl3 is a spin-1=2 magnetic insulator with a spin gap1)

of � ¼ 7:5K.2) It has been successfully described as copper
dimers with an intra-dimer antiferromagnetic exchange
energy J ’ 5:5meV and weaker (. 1:5meV) inter dimer
couplings.3,4) At zero temperature, an applied magnetic field
H closes the gap at the critical field H ¼ Hcð0Þ, giving rise to
a quantum phase transition. Hcð0Þ is related to the gap by
g�BHcð0Þ ¼ �, where �B is the Bohr magneton and g is the
Lande g-factor. The field-induced phase transition continues
to finite temperature T , with the temperature-dependent
critical field HcðTÞ. Above the critical field, a magnetic long-
ranged order in the plane perpendicular to applied field
develops.5,6) The existence of the ordering transition was
predicted by a standard mean-field theory for spins.7)

However, several characteristic features of the transition
could not be explained by the mean-field theory. The two
most notable features are the cusp-like minimum of the
magnetization as a function of the temperature at the
transition, and the power-law like dependence of the critical
field

HcðTÞ � Hcð0Þ / T� ð1Þ

in the low temperature regime. The mean-field theory7) rather
predicts a monotonic decrease of the magnetization and an
exponentially fast approach of the critical field HcðTÞ to its
zero-temperature limit Hcð0Þ, on lowering the temperature.

These features were successfully explained, at least
qualitatively, as a Bose–Einstein condensation (BEC) of
spin triplet excitations (magnons).8) The cusp-like minimum
of the magnetization at the transition temperature is under-
stood with the decrease of the non-condensed magnons at all
temperatures and the increase of the condensed magnons
below the transition, as the temperature is lowered. More-
over, the self-consistent Hartree–Fock–Popov (HFP) ap-
proximation on the magnon condensation gives the power-
law dependence (1) with the exponent � ¼ 3=2, if the

dispersion of the magnons is taken to be quadratic.
As one can easily control the magnetic field, which

corresponds to the chemical potential of the magnons, this
system provides a new arena for the study of BEC, in a
grand-canonical ensemble with a tunable chemical poten-
tial.9)

However, the results of the HFP approximation given in
ref. 8 are not quite satisfactory to describe the experimental
data in a quantitative manner. In order to further extend the
study of magnon BEC, it would be important to improve the
HFP approximation and clarify its range of validity.

One of the problems is that the HFP approximation
predicts a discontinuous jump of the magnetization at the
transition temperature, which is not observed. This is
considered to be an artifact of the HFP approximation, and
related to its breakdown due to strong fluctuation in the
vicinity of the transition. In this paper, we rather focus on
another problem concerning the phase boundary. That is,
while the experimental results are roughly in agreement with
the power law (1), the reported values5,6,8,10,11) of the
exponent � ¼ 1:67{2:2 are consistently larger than the HFP
prediction 3=2. Although it was suggested that the deviation
is again due to the fluctuation effects, it has not been
clarified.

In the present work, we extend the self-consistent HFP
calculations8) by including a realistic dispersion calculated
from microscopic models3,4) instead of the quadratic ap-
proximation �k ’ k2=2m used previously.8) The critical field
HcðTÞ obtained by this method is in very good agreement
with the experiments and represents a significant improve-
ment over the simple quadratic approximation. Therefore the
puzzle regarding the discrepancy of the exponent � between
the theory and the experiment is solved within the HFP
framework. Here we note that there are related theoretical
works12–15) on this problem. We will comment on them later
in Discussions.

We also make several other checks of the HFP approx-
imation with the experimental data, to show that HFP
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framework has a rather wide range of validity but the
quadratic approximation fails above a rather low temper-
ature � 1K for TlCuCl3. Finally, the specific heat is also
computed and compared with the results of Oosawa et al.10)

2. Hamiltonian

As in ref. 8, the Zeeman splitting is assumed to be
sufficiently large compared to temperature so that only the
singlet and the lowest triplet states of each dimer need to be
considered. With this approximation the system is described
by an hard-core boson Hamiltonian

H ¼ HK þHU ð2Þ

HK contains the zero-temperature magnon dispersion
relation �k þ� and the external magnetic field H:

HK ¼
X
k

bykbk �k � �ð Þ ð3Þ

� ¼ g�BH �� ð4Þ

where it is assumed that �0 ¼ 0. The magnon-magnon
interactions are described by

HU ¼
1

2N

X
q;k;k0

Uqb
y
kb

y
k0bkþqbk0�q ð5Þ

and we will neglect the q-dependence of Uq and set Uq ¼ U.
As discussed by Nikuni et al.,8) this system undergoes a
phase transition between a normal phase (at low field or high
temperature) where the system is populated by thermally
excited triplets to a ‘‘superfluid’’ phase where the bosons
condense. This condensation is equivalent, in the spin
language, to a field-induced three-dimensional magnetic
ordering.

3. Hartree–Fock–Popov Treatment of the Condensed
Phase

We reproduce the Hartree–Fock–Popov (HFP) mean-field
analysis of eqs. (2)–(5) which was discussed in ref. 8. For a
strong enough magnetic field the zero-momentum state (we
assume that �k has a single minimum at k ¼ 0) is macro-
scopically occupied byk¼0 ¼ bk¼0 ¼

ffiffiffiffiffi
Nc

p
¼

ffiffiffiffiffiffiffiffi
Nnc

p
. From this

we can write the interaction part of the Hamiltonian in terms
of a constant, two-, three- and four-boson operators:16)

HU ¼ H0 þ H2 þ H3 þ H4 ð6Þ

H0 ¼
1

2N
UN2

c ð7Þ

H2 ¼
UNc

N

X
q

0 1

2
bqb�q þ by�qb

y
q

� �
þ 2byqbq

� �
ð8Þ

H3 ¼ U

ffiffiffiffiffi
Nc

p

N

X
k;q

0 bykbkþqb�q þ H:c
� �

ð9Þ

H4 ¼
U

2N

X
q;k;k0

0bykb
y
k0bkþqbk0�q ð10Þ

where
P0 means that the terms with creation or annihilation

operators at k ¼ 0 are excluded. We perform a simple mean-
field decoupling for HU . While H3 gives zero in this
approximation, H4 gives:

HMF
4 ¼ �U0Nðn� ncÞ2 þ 2ðn� ncÞU0

X
k

0bykbk ð11Þ

where n is the total boson density; it must be determined
self-consistently from the thermal average over the spectrum
of HMF ¼ H0 þH2 þHMF

4 :

HMF ¼ C þ
X
k

0 ~��kb
y
kbk

þ
Unc

2

X
q

0 bqb�q þ by�qb
y
q

� �
ð12Þ

~��k ¼ �k � �eff ; �eff ¼ �� 2Un ð13Þ

C ¼ UN
1

2
n2c � ðn� ncÞ2

� �
� �nc ð14Þ

The mean-field Hamiltonian in the normal phase is obtained
by setting nc ¼ 0 in the previous expression (already in a
diagonal form). In that case, the self-consistent equation for
the density is

n ¼
Z

d3k

ð2�Þ3
fBð ~��kÞ ð15Þ

where fBðEÞ ¼ 1=ðexpð�EÞ � 1Þ is the Bose occupation
number.

When nc > 0, HMF can be diagonalized by the standard
Bogoliubov transformation:

HMF ¼
X
k

0Ek �y
k�k þ

1

2

� 	
�

1

2

X
k

0 ~��k þ C ð16Þ

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~��2k � Uncð Þ2

q
ð17Þ

bk ¼ uk�k � vk�
y
�k ð18Þ

uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~��k

2Ek

þ
1

2

s
; vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~��k

2Ek

�
1

2

s
ð19Þ

The existence of a condensate (nc > 0) is possible when Ek

is gapless, which implies �eff ¼ �Unc, or equivalently:

g�BH ¼ �þ U 2n� ncð Þ ð20Þ

�eff , n and nc are thus linearly related in the condensed phase
and the self-consistent equation is now:8)

n� nc ¼
Z

d3k

ð2�Þ3
~��k

Ek

fBðEkÞ þ
1

2

� 	� �
�

1

2
ð21Þ

4. Dispersion Relation for TlCuCl3

The dispersion relation of triplet excitations in TlCuCl3
was measured at T ¼ 1:5K with inelastic neutrons scattering
by Cavadini et al.3) This dispersion relation was very well
reproduced by Matsumoto et al.4) within a bond-operator
formalism. Their result is:

�k�k0 þ�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ þ akÞ2 � a2k

q
ð22Þ

ak ¼ Ja cosðkxÞ þ Ja2c cosð2kx þ kzÞ
þ 2Jabc cosðkx þ kz=2Þ cosðky=2Þ ð23Þ

J ¼ 5:501meV; Ja ¼ �0:215meV ð24Þ
Ja2c ¼ �1:581meV; Jabc ¼ 0:455meV ð25Þ

where the Brillouin zone is doubled in the z direction
(�2� � kz < 2�) to represent the two magnon branches.
The momentum shift by k0 ¼ ð0; 0; 2�Þ just insures the
consistency between our convention that �0 ¼ 0 and the
location of the minimum of the dispersion at k0 in refs. 3
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and 4. The dispersion relation above has a gap of 0.7meV,
which is in agreement with the result of ref. 3. However the
studies based on a determination critical field as a function
of temperature (see Table I) provide slightly smaller
estimates for the gap (�0 � 0:65meV) in TlCuCl3. There-
fore we corrected the value of J so that the dispersion
relation is consistent with these data. The corrected value
was chosen to insure �0 ¼ 0:65meV (or equivalently
ðg=2ÞHcð0Þ ¼ 5:61T) :

J ¼ 5:489meV ð26Þ

From the computation of curvature of �k around k ¼ 0 the
effective inverse mass17) 1=m is 43.66K (in units where
h�
2=kB ¼ 1), in agreement with the value taken in ref. 8.

Figure 1 shows the experimental data of Cavadini et al. with
the �k given by eqs. (22)–(26). The dotted line corresponds
to the quadratic approximation; it only matches the full
expression at very low energy.

5. Critical Density

Within the HFP approximation the boson density ncr (or
magnetization) at the transition is independent of the
strength U of the magnon–magnon interaction as well as
independent of the value of the zero-field gap �0. It is
obtained by setting �eff ¼ 0 in eq. (15).21) If the full
dispersion relation is used, the result has no adjustable
parameter left. The result is shown Fig. 2 and is in good
agreement with the experimental data. We note however that
the discrepancy is larger when the field is applied along the b
direction. We do not know the reason of the discrepancy at
present.

In the low-temperature limit, the quadratic approximation
would become asymptotically exact within the HFP theory,
giving8,22)

ncrðT ! 0Þ ¼
1

2
�3=2

Tm

2�

� 	3=2

ð27Þ

However, this �T3=2 behavior (dotted line in Fig. 2) is only
recovered at very low temperature and ncrðTÞ shows
significant deviations from eq. (27) already at 2K.

6. Critical Field and Interaction Parameter U

In the HFP approximation the critical field HcðTÞ is
related to the critical density by8)

ðg=2Þ HcðTÞ � Hcð0Þ½ � ¼ 2UncrðTÞ ð28Þ

A linear relation between HcðTÞ and ncrðTÞ is indeed
observed in the experimental data, as can be seen in
Fig. 3. The least-square fits are performed in the low-density
region (or equivalently low-temperature). The values ob-
tained for Hcð0Þ are in good agreement with most of the
previous estimates (see Table I). These fits also provide an
estimate for U around 340K. However, as it can bee seen in
Fig. 4, a slightly smaller value for U (320K) gives a critical
field HcðTÞ which is in very good agreement with all the

Table I. Estimations of the gap (or critical field at zero temperature) from

experiments. Mag. stands for magnetization, INS for inelastic neutron

scattering, ESR for electron spin resonance, ENS for elastic neutron

scattering (observation of the magnetic ordering) and Cv for specific heat

measurements.

Ref. �0 Method

Shiramura et al.2Þ 7.5K Mag.

(1997) (g
2
Hc ¼ 5:6T)

Tanaka et al.18Þ 7.68K ESR

(1998) (160 GHz)

Oosawa et al.5Þ 7.54K Mag.

(1999) (g
2
Hc ¼ 5:61T)

Tanaka et al.6Þ 7.66K ENS

(2001) (g
2
Hc ¼ 5:7T)

Cavadini et al.3Þ 9.28K INS

(2001) (0.8meV)

Oosawa et al.10Þ 7.66K Cv

(2001) (g
2
Hc ¼ 5:7T)

Oosawa et al.19Þ 7.54K INS

(2002) (0.65meV)

Rüegg et al.20Þ 8.2K INS

(2003) (0.71meV)

Shindo et al.11Þ 7.33K Cv

(2003) (g
2
Hc ¼ 5:46T)

Fig. 1. Dispersion relation of triplet excitations. Full lines: result of

eq. (22) with J given by eq. (26). Dotted line: (anisotropic) quadratic

approximation in the vicinity of the minimum. Circles and error bars are

from ref. 3. The labels of the horizontal axis represent k0 ¼ k þ k0 to

reconcile the convention �k¼0 ¼ 0 and the location of the minimum of the

triplet dispersion in TlCuCl3 at momentum k0 ¼ k0 ¼ ð0; 0; 2�Þ.

Fig. 2. Critical boson density as a function of temperature. Squares:

magnetic field along the b direction. Tilted squares: magnetic field along

the ð1; 0; �22Þ direction (data from Oosawa et al.5)). Full line: HFP result

with the full dispersion relation. Dotted line: HFP result with the

quadratic approximation for the dispersion relation �k ¼ k2=ð2mÞ and

kB=m ¼ 43:6K.
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available experimental data, even at high temperatures. This
value is close to that obtained from a similar HFP analysis
(including a small magnetic exchange anisotropy) of the
magnetization curves.15)

In the literature the experimental data for HcðTÞ have been
analyzed by fitting to the power-law (1). Values from � ¼
1:67 to 2.2 have been reported5,6,8,10,11) and it has been
suggested that the deviation from the HFP theory (� ¼ 1:5)

could be caused by fluctuations effects beyond the mean-
field approximation. From our results it appears that a
realistic dispersion relation4) combined with an HFP treat-
ment is able to reproduce the data accurately with a single
adjustable parameter (U). It covers a wide temperature range
from the very low temperature regime < 1K where the
quadratic approximation holds, up to �8K.

7. Specific Heat

The specific heat of TlCuCl3 under magnetic field was
measured by Oosawa et al.10) and shows a peak (with an
asymmetric � shape) at the transition. In this section we
compare these results with the prediction of the HFP theory.

From eq. (12) the expectation value of the energy per site
in the normal phase (nc ¼ 0) is

hEi ¼ �Un2 þ
Z

d3k

ð2�Þ3
~��kfBð ~��k;TÞ ð29Þ

The specific heat is obtained by differentiation with respect
to temperature and we get:

Cv ¼
1

T

Z
d3k

ð2�Þ3
~��2k �

@fB

@ ~��k

� 	

þ 2U
@n

@T

Z
d3k

ð2�Þ3
~��k
@fB

@ ~��k
ð30Þ

with kB ¼ 1 and

@n

@T
¼

Z
d3k

ð2�Þ3
@fB

@T

1� 2U

Z
d3k

ð2�Þ3
@fB

@ ~��k

ð31Þ

In the condensed phase, eq. (12) gives

hEi ¼
Z

d3k

ð2�Þ3
Ek fBðEk;TÞ þ

1

2

� �
�

1

2

Z
d3k

ð2�Þ3
~��k þ C

ð32Þ

After some algebra, we obtain the specific heat as:

Cv ¼
1

T

Z
d3k

ð2�Þ3
E2
k �

@fB

@E

� 	

þ 2U
@n

@T
nc � n�

1

2

�

þ
Z

d3k

ð2�Þ3
�k

Ek

fBðEÞ þ
1

2
þ E

@fB

@E

� 	�
ð33Þ

with

@n

@T
¼

1

T

Z
d3k

ð2�Þ3
~��k
@fB

@E

1� 2U

Z
d3k

ð2�Þ3
�k

E2
k

� ~��k
@fB

@E
þ

�eff

Ek

fB þ
1

2

� 	� 	 ð34Þ

In Figs. 5 and 6 the HFP results above are compared with
the data of Oosawa et al. for two magnetic field orientations.
The theoretical curves reproduce qualitatively the � shape
observed experimentally, although the height of the peak
seems to be overestimated.

8. Discussions

In this paper, we have shown that taking the realistic

Fig. 3. Critical field Hc (normalized by the g factor and for two magnetic

field direction: squares for H k b and g ¼ 2:06 and tilted squares for

H ? ð1; 0; �22Þ and g ¼ 2:23) as a function of the density ncr at the critical

point (obtained from the the magnetization mcr per dimer by ncr ¼
mcr=ðg�BÞ). Data from ref. 5. The full lines and the values of U and Hcð0Þ
are obtained from fits to eq. (28).

    [g=2.06 and g=2.23]

 [g=2.23]

Fig. 4. Critical field HcðTÞ. Full line: HFP result with the full dispersion

relation and U ¼ 320K (plotted for two values of the gyromagnetic

factor). Dotted line: �k ¼ k2=ð2mÞ approximation (g ¼ 2:23). Hexagons:

data from ref. 6. Squares and crosses: data from ref. 10. Triangles and

three-leg symbol: data from ref. 11.
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dispersion relation determined from the microscopic theory
and from the neutron scattering data, we can significantly
improve the HFP approximation to explain the experimental
data, especially the phase boundary curve HcðTÞ. It is now
evident that, in TlCuCl3 the magnon dispersion curve is
rather ‘‘steep’’ so that the quadratic approximation fails
above a rather low temperature � 1K.

It may be rather surprising that the HFP approximation,
which is generally believed to fail in the critical region,
describes a wide range of experimental data precisely. This
appears to be the case, even though the HFP approximation
still contains unsatisfactory features of predicting disconti-
nuities in the magnetization and in the specific heat at the
transition. These discontinuities are considered to be an
artifact of the HFP approximation. The true behavior of the
magnetization in the model (2) is believed to be continuous
and that of the specific heat to show a sharp cusp (negative
exponent �, see ref. 23) at the transition, which is classified
as the three-dimensional (3D) XY universality class.

However, in fact, the experimental data on TlCuCl3
discussed in §7 does not show such a sharp singularity and is
rather similar to the HFP prediction. This may be explained
by small anisotropies (breaking the Uð1Þ symmetry around
the magnetic field direction), which are expected to exist in
any real magnetic system. The fact that the observed
moment in the ordered (condensed) phase of TlCuCl3 points
to a constant direction6) suggest the presence of the
anisotropy. Moreover, recently it is argued that a high-
precision ESR measurement reveals the anisotropy.24) Such

anisotropies induce a small gap and should reduce the
thermal fluctuations (and thus the specific heat) in the
vicinity of the transition, which could be also smeared out
into a crossover. Since the breakdown of the HFP approx-
imation is generally due to the critical fluctuation, the
reduction of the critical region caused by the magnetic
anisotropies may actually make the agreement with the HFP
predictions better, although we did not take any anisotropy
into our calculation. Recently, an HFP calculation including
a (small) magnetic anisotropy was carried out by Sirker et
al.15) and provided an improved description of the magnet-
ization curves compared to that obtained from the isotropic
model. They also emphasized that the HFP approximation
should be valid outside a narrow critical regime.

Magnetic anisotropies are not the only corrections that
may be added to the present model. Indeed, NMR measure-
ments revealed that the transition to the ordered phase is
(weakly) first order and accompanied by a simultaneous
lattice distortion25) (see also ref. 12). Spin–phonon inter-
actions therefore seem to reduce the importance critical
fluctuations close to the transition while the resulting lattice
distortion certainly induces some change in the magnetic
exchange parameters.26) An analysis of the consequences of
such a magneto-elastic coupling is an interesting issue for
further studies.

Finally, let us comment on related theoretical works.
Sherman et al. discussed that the agreement of the HFP
result to the experiment is better if the ‘‘relativistic’’ form
�k þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 þ�2

p
is assumed for the magnon dispersion

relation.12) Our approach in this paper of modifying the
dispersion is actually the same to theirs. However, we see no
particular reason why we should take the relativistic form,

Fig. 5. Specific heat (per dimer) under an applied field (along the b axis)

minus the specific heat in zero field. Full lines: HFP results with U ¼
320K. Circles: measurements by Oosawa et al.10) The results for the

different values of H have been shifted by 0.04 for clarity.

Fig. 6. Same as Fig. 5 with magnetic field H ? ð1; 0; �22Þ.
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although it may be a better approximation for TlCuCl3 than
the quadratic one. In any case, ours would give a further
improvement over ref. 12 within the HFP framework.

In refs. 13 and 14, the phase boundary HcðTÞ is studied
numerically by a Monte Carlo method, for a dimer system
on a cubic lattice. The result should contain effects from
both the deviation of the dispersion from simple quadratic,
and the fluctuation beyond HFP. While we cannot directly
compare their result to ours as we deal with different models,
the qualitative behavior is similar. Namely, they also
observed the deviation from � ¼ 3=2 at higher temperatures,
but the result seems to become closer to the � ¼ 3=2 as the
temperature is lowered. However, they suggest that this
behavior including the deviation from � ¼ 3=2 could be
universal and does not depend on the particular dispersion,
in a moderately low temperature regime. This is in contrast
to our result that the non-universal magnon dispersion
explains the observed phase boundary HcðTÞ and its
deviation from � ¼ 3=2. The resolution is an open problem
for the future. Numerical approaches would be also useful to
clarify the effect of the (small) anisotropies.
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Note Added

After submission of this paper, Kawashima27) clarified the
question of the exponent � with numerical simulations of the
3D S ¼ 1=2 XXZ model as well as field-theoretical argu-
ments. According to his results, in the limit of T ! 0, the
HFP prediction � ¼ 3=2 is indeed exact. This is also
consistent with our result that the phase boundary for a
wide temperature range can be accounted within the HFP
calculation using the realistic dispersion curve.
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